International Journal of Recent Innovations in E-ISSN: 2635-3040; P-ISSN: 2659-1561
Academic Research Homepage: https://www.ijriar.com/
This work is licensed under a Creative Commons Volume-9, Issue-4, October-December-2025: 24-37
Attribution 4.0 International License [CC BY 4.0]

Research Article

Automatic Sinkhole Classification by Employing Field Data:
Application to Sinkholes in South Korea

aWoohyun James Chun, ’Chang Joon Chung, ‘Hyungjun Chin, 4Seongbin Cho, ¢eDong Yeon Hu, fMadeline
Jung and *sBob Nam

aChoate Rosemary Hall, USA, bSeoul Foreign School, South Korea, eSeoul International School, South
Korea, 4Avon Old Farms School, USA, <&fCornerstone Collegiate Academy of Seoul, South Korea, *¢Seoul
Innovations Research Institute, South Korea
*Corresponding Author Email: bobyep25@gmail.com

Received: September 16, 2025 Accepted: October 07, 2025 Published: October 13, 2025

Abstract

Many complicated factors can play a simultaneous role in sinkhole attacks. The surface and groundwater
level can be altered due to human involvement such as infrastructure settings or due to the environmental
changes such as global warming or precipitation, along with the complex hydro-chemical properties
implicitly governing the changes in ground surface. As for these causes of sinkhole attacks, government of
South Korea has adopted causality based six classifications, measuring and deploying all countrywide
sinkhole event records for eight years. Moreover, Geo Big Data Platform of Korean government enables the
recognition of the underlying geographical characteristics below the sinkhole attack regions. By extending
and fusing these data sets into 13 features related with ground subsidence, we applied Random Forest (RF)
Classifier for automatic sinkhole classification, obtaining 94.7% accuracy. Especially, machine learning
model performance is highly enhanced when geological characteristics of sinkhole attack regions are
combined. With this investigation, it can be suggested that field data, independently of the generally utilized
thermal images from drones or from GPR, or LiDAR data, can also be comparably useful in identifying and
classifying sinkholes, especially for the case of sinkholes in metropolitan areas like in Korea. Merging these
field data into the potential data sets from various wireless sensors like 3d GPS to make it more plausible to
forecast sinkhole attacks in advance is our subsequent research agenda.

Keywords: Sinkhole, Machine Learning, Random Forest Classifier, Geological Characteristics, Field Data for
Sinkholes.

Introduction

Sinkholes, a commonly used term to express collapse dolines, are natural phenomena with sizes and depths
ranging from centimeters to meters, occurring in karstic regions containing carbonate and evaporitic rocks
that cover approximately 20% of the Earth’s surface [15]. Sinkhole formations occur under the control of
many topographic, geological-tectonic, environmental anthropogenic, hydrogeological, and climatic
(meteorological) factors [22]. These determining factors can be exemplified as the surface and groundwater
level that enable dissolution with soluble carbonate and evaporitic karst rocks, the flow direction and hydro-
chemical properties of water, precipitation, evaporation, stratification that facilitates the movement of water
in rocks, porosity and permeability, and cracks and fractures [15, 16]. However, due to the influence of many
distinct factors, it is challenging to model sinkhole formations in temporal and spatial dimensions [17, 18,
19]. For this reason, the modeling of sinkhole susceptibility maps is a complex process, as in other types of
natural phenomena, and performing these operations with classical methods can be a very time-consuming
and puzzling task for the decision-makers [22]. Deterministic models attempt to analyze sinkhole formation
based on hydrogeological and geotechnical data within the framework of physical and mechanical principles
[22]. However, practical application of these methods is limited due to the high demand for detailed field
data and their restricted scalability over large areas [20, 21].

Sinkholes in Korea, however, reveal a clear tendency to be clustered in the metropolitan areas, enabling the
relatively clear-cut estimation of the causes, since the infrastructure settings are more directly involved with
the sinkhole formations rather than the underlying hydrogeological and geotechnical processes. The fact that
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about 53% of sinkholes during recent three years are caused by water supply or drain-pipe damages
represents sinkholes in Korea are relatively easier to identify, classify and manage, since the drastic
underground movement related with water flow can dominate slow and normal geotechnical procedures.
Moreover, cumulated sinkhole tracking data sets for eight years can shed a light, even in case where the data
sets are not complete and through. With these prospects in mind, our study employs publicly available field
data sets about sinkholes from data base in Underground Safety Information Network
(https://www.jis.go.kr/) and geological data sets below the sinkhole attack regions in Geo Big Data Platform
(https://data.kigam.re.kr/) of Korean government to develop an automatic sinkhole classification model],
facilitating complicated on-field classification procedures which normally take several months. Fusing these
field data sets into the potential data sets from various sensors is our next step to further our search for an in
advance warning system of sinkhole attacks.

Literature Review

Deep learning-based sinkhole detection has emerged as a promising tool to address the challenges in
accurately identifying and predicting sinkholes in various environments, such as urban, natural, and
infrastructure settings. Many literatures reveal a transition from classical machine learning methods to deep
multimodal architectures that merge high-resolution imaging and spatiotemporal data for improved
accuracy and robustness [1, 2, 3, 4].

Early Machine Learning Innovations

Initial research focused on classical machine learning techniques such as support vector machines, decision
trees, and ensemble models, primarily leveraging simulated or limited real-world datasets for sinkhole
detection in Wireless Sensor Networks (WSNs) [1-14]. These approaches aimed for high precision in
anomaly detection, with innovations around feature selection and data optimization for energy efficiency
and false positive reduction [1].

Advancement to Deep Learning Architectures

Recent studies shifted towards deep learning, utilizing convolutional neural networks (CNNs), multimodal
fusion techniques, and weakly supervised learning [2, 3]. The introduction of frameworks like SinkholeNet
enabled the classification and localization of sinkholes in high-resolution RGB-slope images using fused
multimodal inputs. These deep learning models often excel traditional methods, benefiting from extensive
datasets that incorporate pixel-level labels and topographical features, while offering superior spatial
understanding and adaptability [2, 3].

Techniques such as Frequency Ratio (FR) [24, 25, 26], Logistic Regression (LR) [21, 27, 28], Linear
Discriminant Analysis (LDA) [29], and Weight of Evidence (WoE) [30] have been widely employed in
generating sinkhole susceptibility maps.

Application to Remote Sensing and Infrastructure

Modern research encompasses remote sensing data such as LiDAR, InSAR time series, and multispectral
images to detect sinkholes over large areas and infrastructure settings, including railways and urban
landscapes [4, 5, 6]. Advanced deep learning algorithms are employed to model sinkhole morphology, learn
spatiotemporal event patterns, and automate the mapping and assessment tasks. These approaches facilitate
earlier and more reliable detection in complex geophysical environments, outperforming previous classical
approaches in recall and localization accuracy [4, 5, 6].

Dataset Innovations and Benchmarking

The lack of extensive annotated datasets for sinkhole detection prompted the development of novel open-
access datasets, such as RGB-slope patches and synthetic features from simulation environments [2, 3].
These data sets enable benchmarking and comparison of various deep learning algorithms-segmentation
models, weakly supervised classifiers, and multimodal fusion techniques-demonstrating significant
improvements in overall hazard detection and susceptibility analysis [2,3, 7].

In summary, literatures indicate that deep learning methodologies provide enhanced performance,
flexibility, and scalability for sinkhole detection across environmental and infrastructure domains. Recent
advances focus on exploiting multimodal remote sensing and developing comprehensive public datasets,
thus supporting more accurate classification, localization, and susceptibility analysis of sinkholes [1, 2, 3, 4].
Table 1 summarizes machine learning (ML) or deep learning (DL) studies to detect sinkholes, a simplified
version of Table 1 of [14].
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Table 1. Simplified summarsy

y of ML or DL studies to detect sinkholes [14].

Authors

Technique used

Data source

Performance metrics

Lee et al. [8]

3D-convolutional neural
network (CNN)

Thermal images from drones,
resolution: 640x480 pixels.

Precision: 87.9%
Recall: 88.1%

Zhu and | Random forest classifier | LIDAR data, average point | Precision: 84.71%
Pierskalla [9] spacing: 1 m, DEM cell size: 1.5 | Recall: 65.17%
m.
Kang et al. | Modified CNN | Ground penetrating radar | (Original resolution)
[10] architecture based on | (GPR), original resolution: | Precision:88.26%,
AlexNet 50x50 pixels (B-scan), 50x13 | Recall: 72.36%,
(Krizhevsky et al. [31]) pixels (C-scan), enhanced to | (Enhanced)
200x200 pixels. Precision: 100%
Recall: 100%,
Mihevc and | U-Net LiDAR, DEM cell size: 1m Intersection over union
Mihevc [11] (IoU): 60.4%

Dice coefficient: 72.36%

Nefeslioglu et
al. [12]

Artificial neural network
(ANN)

Satellite optical imagery and
InSAR DEMs spatial
resolution: 10 m.

Root mean square error
(RMSE): 45.1%

Rafique et al.
[13]

U-Net

LiDAR DEMSs, aerial imagery
resolution: 1.524 m per pixel.

IoU: 45.38%
Precision: 66.29%

Data

Underground Safety Information Network (https://www.jis.go.kr/) of Korean government has recorded all
1554 sinkhole attacks from January 1, 2018 to September 30, 2025, allowing public access and search. For
each sinkhole attack in South Korea, date, address, width, extended width, depth, estimated cause, estimated
detailed cause, number of casualties, number of damaged cars, restoration status, restoration methods and
future restoration plans are recorded. According to this data base, yearly number of sinkhole accidents
reveals slightly decreasing pattern, although the pattern is somewhat ambiguous for recent five years
(Figure 1).
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Figure 1. Number of sinkhole attcks in Korea.

Table 2 denotes six sinkhole classes with the notation in this study and estimated causes applied in the
Underground Safety Information Network site.
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Table 2. Sinkhole types.

Notation of sinkhole type Evaluation of the causes of sinkhole events
A (numeric value assigned: 0) Supply-pipe damage

B (1D Drain-pipe damage

C (2) Poor soil compaction

D (3) Poor excavation

E (4) Underground facilities damage

F (5) Complex reasons or indeterminable

Among these 1554 sinkhole disasters, 440 recent cases from January 1, 2022 to December 31, 2024 are
included in our study (420 cases for trained and 20 for test sets). Data values of year 2025 are not included
since classification has not been completed during the data collection stage. Summary statistics for these 420
observations are given in Table 3. Graphical representations of six sinkhole types are given in Figure 2 and
Figure 3.

Table 3. Summary statistics of variables.

& Altitude(meter) Month
Damage

count 420.000000 420.000000 420.000000 420000000 420.000000 420.000000 420.000000 420.000000 420.000000 420.000000
mean 36441425 127526108  2.292095 3381548 1533000 0004762 0088095  0.109524 52866595 6395238
std 1095194 0827883  9.859848 6457423 2276039 0068924 0482981 0471027 72702686 2512209
min 33393220 125817800  0.030000 0000000 0020000  (0.000000  0.000000  0.000000 -8.000000  1.000000
25% 35227325 126921225  1.000000 1000000 0787500 0000000  0.000000  0.000000 14.750000  5.000000
50% 36352875 127.128300  1.500000 1500000  1.315000  0.000000  0.000000  0.000000 36.000000  7.000000
15% 37489653 126221325  2.000000 3.000000  1.900000  0.000000  0.000000  0.000000 60.000000  8.000000
max 38275590 129343900 200.000000 55000000 40.000000  1.000000  8.000000  7.000000 §15.000000  12.000000

Latitude Longitude Width(m) Width.extention Depth Death Injured

According to below Figure 3, approximately 53 percent of sinkholes in South Korea for three years are
caused by supply water-pipe damages (Type A) or drain water pipe damages (Type B). Except for supply
water pipe related class, other types have roughly similar frequencies. Since most sinkhole cases are noticed
in metropolitan areas, such as Seoul, Gyeonggi, Pusan, and Gwangju, features related with infrastructure
settings might dominate those related with environmental characteristics, the latter of which might be
committed to the class of complex and unknown causes (Type F) when field data are registered, since not a
geological analysis but a constructional restoration has been the main purpose of sinkhole event record.

Distribution of Sinkhole class Sinkhale Types
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Figure 2. Bar chart of sinkhole type. Figure 3. Pie chart of sinkhole type.

From Figure 4 and Figure 5, about 43% of sinkholes occur within summer seasons from June to August,
implying that rainfalls have a major role in the presence of Type A sinkholes. Frequencies of sinkholes tend
to increase from February to August, decrease until October, and then remain roughly constant or increase
during winter seasons. When the histogram of month is segmented, a clear pattern comes up that the
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proportion of sinkholes caused by water supply pipe damage increases from March to August, moving
together with the increase in summer rainfalls. The addresses of sinkhole observations are transformed into
latitude, longitude and altitude to make it possible to track the geological implications.
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Figure 4. Histogram of month. Figure 5. Segmented histogram of month.
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Figure 6. Histogram of latitude. Figure 7. Segmented histogram of latitude.

According to above histograms of latitude, several observations are noteworthy. When latitude is below
34.5, most of sinkholes are stemmed from water supply pipe damages, while the proportions of this type are
high along three peaks of 35, 35.9 and 37.5. Most of all, this proportion is highest along latitude of 35.9.

Three modes of latitude correspond to the locations of three metropolitan areas, playing a role of one axis of
clusters.
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Figure 8. Histogram of longitude. Figure 9. Segemented histogrom of longitude.

Subsequent longitude distribution reveals dominance of water supply pipe damage type around latitude of

127. Like the case of latitude, two or three modes might correspond to the longitudes of two or three
metropolitan areas.
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Altitude Distribution
Distribution of Altitude
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Figure 10. Histogram of altitude. Figure 11. Segemented histogram of altitude.

Distribution of altitude is strongly skewed to the right with 3 outliers on the right side (Figure 10 and Figure
11). The mean altitude is 53 meters while 66 percent of sinkholes are recorded below 50 meters. Sinkholes
caused by poor excavation during a construction procedure (Type D) do not appear above 400 meters, which
seems reasonable since constructions are limited at such a high altitude.
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Figure 12. Histogram of width. Figure 13. Segmented histogram of width.

Width measure of sinkhole disaster is a key feature in a classification issue. The mean width is 2.23 meters,
while 92 percent of sinkholes are less than 3 meters wide. Remarkable fact is that all sinkholes measuring
more than 10 meters in width are caused by poor excavations or underground facilities damages, implying
that more serious sinkholes can appear when infrastructure construction management is inadequate rather
than when supply or drain water pipe is outdated or risky.
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Figure 14. Histogram of depth. Figure 15. Segmented histogram of depth.

Distributions of depth and width are similar in terms of severe skewness and the existence of outliers. Like
the variable of width, for the sinkholes deeper than 3 meters, the proportion of underground facilities
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damage significantly increases, where several outliers belong to this category. Graphical displays of these
variables in this section suggest that several underlying patterns can be identified and encompassed in the
subsequent statistical and machine learning models. The distributions of other variables such as number of
casualties, number of deaths, number of car damages, and construction permission rate are not included in
this section, which will be covered later. Among these, yearly construction permission rate is not directly
matching to each sinkhole record but to the cities where some of sinkhole events are simultaneously
included.

First Data Inspection: Linear Regression Model

As a first step to figure out the relations of variables, multiple linear regression with a backward selection is
conducted after encoding sinkhole types into integer values from 0 to 5. Among 11 explanatory variables, 6
variables are selected with a standard of p-values less than 0.1. Estimated prediction model with standard
errors in parenthesis is:

Sinkhole type number = —41.557 14193y + 0.139 ¢ og)*Latitude + 0.308 194)*Longitude + 0.016 gg9)*Width

+0.030(.014)*Width extension +3.564 4 5,5y *Death - 0.064 ( 34)*Month

However, adjusted R? is only 0.062, implying explanatory power is too low. Output table is given in
Appendix as Table 6 and Table 7. To back up the low explanatory power, more features outside the data sets
from Underground Safety Information Network are needed.

Data Extension

The variables from Underground Safety Information Network are designating the status of sinkhole events,
describing some distinct features about sinkholes. Six classification standards in Korean sinkholes are not
symptom based but causality based, established to make it fast and easy to restore. Therefore, in terms of the
susceptibility of sinkholes, several key features such as the ages of water supply and drainpipes or proximity
to large-scale construction sites are missing, most of which are hard to be obtained during the data collection
stages and thus will be included in next study. Leveraging these limitations, underground geological types
are added in our study, since geological characteristics are more closely related to susceptibility of sinkhole
attacks in terms that even the same risk of supply or drainpipe damage or excavation status might be
differently realized if the underlying geological types are different. Therefore, underlying geological types
are gathered from Geo Big Data Platform (https://data.kigam.re.kr/), as a proxy for missing key features in
one sense and as a way of increasing explanatory power in the other sense. These underlying geological
features are searched by one-by-one matching of inserting each address of sinkhole attacks into the search
engine of Geo Big Data Platform and then classified into 21 subgroups as described in Table 4.

Table 4. Geological classes underlying sinkhole regions.
Notation of geological class Name
Gneiss
Deabo granite
Bokcheon granite
Yucheon Group
Northern Sangwon Supergroup
Hayang Group
Nangrim Group
Sindong Conglomerate
Basaltic granite
Basaltic trachyandesite
Foliated granite
Buncheon granitic rocks
Yangdeoktong (Yangdoktong) Formation
Hamgyeong Formation
Okcheon Supergroup
Duman Formation
Granitic gneiss
Namsan granitic rocks
Hamdeok Group
Daedong Supergroup
Reclaimed land
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Figure 16. Pie chart of geological classes.

Below the sinkhole attack regions, the most common geological classes, such as G (Gneiss), H (Deabo
granite), R (Foliated granite) and ] (Yucheon Group) composed 74% of total sinkholes, differing from the
proportions of all regions with or without sinkhole attacks. Therefore, certain type of dependencies can be
presumed between geological types and sinkhole attacks, which is apparent in geotechnical context.
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Figure 17. Bar chart of geological classes. Figure 18. Segmented bar chart of geological

classes.

More specifically, from the segmented histogram, sinkholes from poor excavation and drain-pipe damage are
almost negligible in geographic type R (Foliated granite). Also, water supply pipe damage is not a cause in
the regions of M (Nangrim Group), T (Yangdeoktong Formation), ZW (Reclaimed land), Y (Namsan granitic
rocks), and ZZ (Daedong Supergroup).

7.

Figure 19. Map of sinkhole and geology (D. Figure 20. Map of sinkhole and geology (II).
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From above two maps with sinkhole attack regions (green circle) and geological types below these districts,
several clusters, one north-western and the other south-eastern are noticeable. To catch up with more
thorough relations, second data investigation is included in the next section.

Second Data Investigation: Factor Analysis

To more closely look into the relations of these 13 variables, Principal Component Analysis (PCA) is
implemented after encoding geographical types into integer values from 1 to 21 and sinkhole types into the
numbers from 0 to 5, minimizing the issues related with the application of PCA in case of categorical
variables. Factor loadings are in Table 9 of appendix.
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Figure 21. PCA biplot of sinkhole features.

In Figure 21, ‘width’ and ‘width extensions’ are denoted as ‘W’ and ‘WE’ for simplicity. The negative
correlation between the pair of ‘longitude’ and ‘geological classes’ and that of ‘latitude’ and ‘death’ composes
the most of the first principal component. The positive correlation between ‘width’ and ‘sinkhole type’ makes
up the most of the second principal component. Moreover, sinkhole type is positively correlated with ‘width
and width extensions’, ‘altitude’, ‘construction permission rate’ and ‘latitude’, while it is almost uncorrelated
with ‘number of car damages’, number of injured’, ‘longitude’ and ‘geo class’. In terms of correlation, width
measure of sinkhole attacks is a key variable determining sinkhole classification. Geological class does not
directly govern the variation of sinkhole types; however, it implicitly but strongly affects all variations of all
13 features. These underlying dependencies will be utilized in the following Random Forest Classification
method.

Final Data Inspection: Outcome of Random Forest Classifier
Leveraging decision trees while enhancing their accuracy, Random Forest (RF) stands out as a highly
effective ML method employed for both regression and classification purposes [23].

To assess classifier performance, several measures are applied:

True Positives (TP): instances correctly labeled as positive.
True Negatives (TN): the instances correctly labeled as negative.
False Positives (FP): instances mistakenly labeled as positive.
False Negatives (FN): instances mistakenly labeled as negative.

These measures are computed using a confusion matrix, a foundation for evaluating performance. For a
single class C;, the terms TP;, FN;, TN;, and FP;, are used to evaluate class-specific metrics. With these
measures, the followings are calculated to evaluate the performance:
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o TP;
Sensitivity = ————
(TP;+FN;)
1A L
TN;
Specificity = ————
p ty (TN;+FP;)
TP;+TN;
Accuracy = (TP +TNy)
(TN,:+FP,;+TP,:+TN,:)
. TP;
Precision = ———
(TPi+FP,:)

2xPrecisionxSensitivity

F1l-score = — —
(Precision+Sensitivity)

In our study, classification report exhibits accuracy rate of 94.7% as in the Table 5.

Table 5. Classification report of random forest classifier.
Classification Report:
precision recall fi1-score

class
class
class

.08
.86
.94
.20
.00

class
class
class

VMhWNEDB

accuracy
macro avg
weighted avg

Associated confusion matrix is given in appendix as Table 8 where diagonal elements are 4, 3,8, 1, 1, and 1,
allowing high accuracy, recall and F1-scores.

Conclusion

To identify and classify sinkholes, data sets such as LiDAR or images from satellites or drones are now used
more and more widely. In our model, only open access field data like address, width, depth, month,
underlying geological classes of sinkholes and so on are used to classify sinkhole types, obtaining 94.7%
accuracy rate, along with 98% precision and 96% recall rate. If the data sets are extended to include thermal
data and the depth of underground water below the sinkhole attacks as are attached in appendix, which will
be included in our next study, more accurate classification outcome is expected. Moreover, if data sets from
various sensors are merged into this background field data, earlier warning and identification of sinkhole
attacks seem to become more plausible, which is a policy proposal we want to address.

Appendix

Sinkhole classified by Month
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Figure 22. Pie chart of month.
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Table 6. Regression outcome (I).
Linear Regression v

R R* Adjusted R* RMSE

Mo 0.285 0.081 0.059 1729

M. 0.285 0.081 0.061 1.727

M: 0283 0.080 0.062 1726

M: 0.279 0.078 0.062 1.726

M. 0275 0.076 0.062 1726

ANOVA
Model Sum of Squares df Mean Square F p

M. Regression 108.268 10 10.827 3621 <.001
Residual 1222.922 409 2.990
Total 1331.190 419

M. Regression 108.048 9 12.005 4024 < 001
Residual 1223.142 410 2983
Total 1331.190 419

M: Regression 106.350 8 13.294 4.461 < 001
Residual 1224.841 41 2.980
Total 1331.190 419

M; Regression 103.857 7 14.837 4981 <.001
Residual 1227.333 412 2979
Total 1331.190 419

M. Regression 101.024 6 16.837 5.653 <.00
Residual 1230.167 413 2979
Total 1331.190 419

Table 7. Regression outcome (II).

M (Intercept -40.912 14.210 2879 0.004
Latitude 0.140 0.080 0.086 1.756 0.080
Longitude 0.303 0.105 0141 2897 0.004
Width(m) 0.016 0.009 0.088 1719 0.086

Width extention 0.030 0.014 0.107 2096 0.037
Depth 0.035 0.037 0.045 0975 0330
Death 3564 1228 0.138 2902 0.004
Month -0.066 0.034 -0.094 -1.961 0.051
M (Intercept -41.557 14.193 -2928 0.004
Latitude 0.139 0.080 0.086 1752 0.080
Longitude 0.308 0.104 0.143 2953 0.003
Width(m) 0.016 0.009 0.086 1683 0.093
Width extention 0.030 0.014 0.109 2137 0.033
Death 3.564 1.28 0.138 2802 0.004
Month -0.064 0.034 -0.090 -1897 0.080

Table 8. Confusion matrix.

Table 9. Factor loadings of PCA.
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Figure 23. Map of thermal data. Figure 24. Map of underground water depth.
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